
Thomas Keenan
Sr. Product Marketing Mgr.

Kasten by Veeam

Ali Dowair
Software Engineer

Kasten by Veeam

Exploring Kubernetes Custom Resource
Definitions
Take your Kubernetes Knowledge to the Next Level!

Dave Smith-Uchida

Technical Leader

Kasten by Veeam

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

1. Ask Questions in Q and A window, chat in Chat

Window

2. Online Poll – we'd love your inputs

3. Stay until the end - $200 Gift Card

4. We are recording – Slides and Replay will be shared via

email

5. Register for Learning labs at KubeCampus.io

Housekeeping

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

1. What is a CRD Based API?

2. Examples of CR Based APIs

3. Security, Parallelism and Performance Considerations

4. Implementation Approaches

5. CRD Hands on Demonstration

6. Q and A

7. Gift Card Drawing

Agenda

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Kubernetes evolution Kubernetes started as a way to deploy and run
containers at scale

Configurations were relatively static

• YAMLs once deployed were not changed much

• Applications were not Kubernetes-aware

Kubernetes is evolving into more of an operating
system for running applications

Applications are being built as Kubernetes
applications

• Kubernetes mechanisms are being used to
control applications

• Applications can be composed of other
applications

• Custom resources are an enabler of
Kubernetes Applications

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

What is a Custom Resource Based API ?

• Application does not provide its own API

endpoint (REST, GRPC, etc.) but instead
reacts to additions/changes/deletions of

resources managed by Kubernetes

• Possible types of resources

• Custom Resource Definitions (CRDs)

• Aggregated APIs

• ConfigMaps

Client CR Driven App

Kubernetes resource

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

How does a custom resource-based API work?

• General Kubernetes model

• Clients change resource to reflect desired

state

• Controller (application) detects difference
between desired state and actual state and

tries to bring actual state to desired state

• Status of resource is updated in
Kubernetes resource (is desired state and

actual state the same, was there an error)

• “Relentless forward progress” – when

there’s an error, keep trying. If the
controller restarts, keep trying

Controller

ResourceClient
CRUD ops

State

Reconcile Adjust

Audience Poll

CRD usage

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Declarative APIs

Desired state is “declared” by writing it – system is then responsible for reconciling
actual state with desired state

Traditional APIs are usually imperative – “do this now”

Example:

• Imperative API – “move box A to shelf 5”

• When API call is made, system moves box A. If there’s a problem, an error is
returned. When the API call completes, box A is on shelf 5

• Declarative API – “box A is on shelf 5”

• When API call is made, declared shelf of box A changes to 5. API call is now
complete. System tries to reconcile actual shelf of box A to 5. If unable to, continues
to retry.

This is the Kubernetes Way

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Actions masquerading as resources

• What’s wrong with this?

• What order do the actions get
executed today?

• Where’s the box? Needs
additional resource to discover

• Why are there so many “Move
Box” resources lying around? Who is
cleaning them up?

• No judgement – I’ve done this

• Why? Didn’t want to add an API
endpoint, needed a publish/subscribe
mechanism, users wanted to interact
using kubectl, etc.

apiVersion:

”boxes.example.com/v1"

kind: MoveBoxAction

metadata:

name: move-1234

spec:

box: A

shelf: 5

status: Succeeded/Failed

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

A proper declarative API design

apiVersion:

”boxes.example.com/v1"

kind: Box

metadata:

name: a

spec:

shelf: 5

status:

state:Moving/Retrying/Settled

shelf: 5

Why is this better?

• Name of resource identifies Box

• Last writer wins in order of execution
– no need to figure out order of
operations

• No need for garbage collection

• One resource represents location of
box and handles changes in location
of box

• Reconciliation is just checking
differences between actual state and
declared state

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Standard Kubernetes RBAC permissions can be applied to Custom Resources.

Pros:

• Existing security model

• Authentication handled by Kubernetes API server

Cons:

• Users need to have Kubernetes API server access

• Kubernetes security not strong enough to allow external users access

• Must give Kubernetes credentials to user

• Could use gateway, but then security is responsibility of application again

Security

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Some common patterns:

Control access to namespace where CRs live

• Users with read/write access can use the app

• Easy to implement, fairly coarse control

Create RBAC rules on specific resources

• Users can only read/write their resources

• Users need to know the resources, can’t list

Namespace per user

• User can read/write resources in their namespace

• Application needs to monitor multiple namespaces

• Be careful of privilege escalation paths if some shared resources lie in the controller’s
namespace

Security usage

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Scale/Performance considerations

Scale

• Adding large numbers (>1000) of resources to Kubernetes api server not recommended

• Aggregated API server can get around this

• Large numbers of clients not recommended

Performance

• Request/response turns into

• write CR

• etcd write

• controller wakeup

• (work)

• CR status update

• etcd write

• client wakeup

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Advantages & Disadvantages of CR based APIs

Pros Cons

• Application is tied to Kubernetes

• Declarative API not always suitable

• Large number of resource (>1000) not

recommended for K8s API Server

• Performance

• Leverage K8s concepts & services:

• RBAC

• CRUD Operations built-in

• Control from kubectl, K8s APIs

• Scalability

• Easy to have multiple instances of
app running

• Reliability

• App does not need to be running for
resources to be accessible

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Two ways to implement a K8s Resource based
application

CRDs and Controllers

• Schema for resources is registered in Kubernetes with Custom Resource
Definitions

• Application (Controller) reacts to changes in resources and keeps state in
resources

Aggregated API server

• Endpoint for resource type is registered with Kubernetes API server

• Operations on that resource type are delegated to the application (aggregated
API server)

Key difference:

• CRDs are easier to implement, aggregated API server better for large numbers of
resources, performance

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Controller/CRD application

Most common model for CR based applications

Custom Resources are stored by Kubernetes API

server

Controller(s) reconcile desired state with actual
state

• Persistence, storage, API endpoints handled by

Kubernetes

• Client and application fully disconnected – if
application crashes, no actions needed on

client side Controller

ResourceClient
CRUD ops

State

Reconcile Adjust

CRD Demo

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Options to build CRD APIs

1. Kubebuilder

• Open-source tool

• Quickly develop and deploy CRD APIs and webhooks

2. Operator SDK

• Also open-source, built on top of Kubebuilder

• Integrates with Operator Lifecycle Manager

• End-to-End testing framework

• Best practices scorecard

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Kubebuilder: steps

1. Init go module

2. Init Kubebuilder project

3. Create CRD, controller scaffolding

4. Define CRD type (spec and status)

5. Implement controller (reconciler) logic

6. Install CRD and run/deploy controller

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Demo Recording

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

General conclusions

1. CR driven apps are mostly used for
Kubernetes controlled resources and system
utilities

2. Suitable for regular applications with these
conditions:

• Dependency on Kubernetes is
acceptable/desirable

• Client access to Kubernetes is
acceptable/desirable

• Operations can be fit into a declarative
model

• Relatively low volume of operations (10s to
100s ops/sec; not 1000+)

• Total number of resources to be
represented should be in the 1000's range

Learn More

© 2023 Kasten by Veeam. All rights reserved. All trademarks are the property of their respective owners.

Join us @ KubeCampus.io

Addressing community input for more Kubernetes education

A FREE resource welcoming all learner levels

Self-paced, hands-on labs covering Kubernetes fundamentals,
backup and DR in Kubernetes

Courses Include:

• Kubernetes Principles

• Understanding Applications in Kubernetes

• Understanding Security in Kubernetes

• Understanding DR in Kubernetes

• Kubernetes Management and Observability

Expert Kubernetes Instructors & Community Interaction

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Courses

Hardware, software and knowledge requirements

• Knowledge of Basic Linux commands and navigation

• Laptop with 4 GB of memory and 20 GB of hard drive
available

• Windows 10 , Mac OS, Linux

• Chrome, Microsoft Edge, Chromium Browser, Safari

Courses Structure

• Review of concepts from pre-work including blog,
ppt, VOD and Kasten K10 docs for advanced users

• Hands on lab, following specific Kubernetes
commands to achieve mastery and success

• Badging and added resources awarded for each
course completed

Introduction

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

Insightful Content

Ebooks
• Gorilla Guides – Getting Started, Storage, Security,

Observability

• Dummies Guide

Blog Posts
• Diverse topics of interest to Kubernetes Community

• Application Consistency, OIDC, Networking, Security,

Minikube
• Beginner and Pro Journeys
• Submit yours today! Contact@KubeCampus.io

Video Recordings and Webinars

• VODs accompany each Lab
• Live Webinars on Security, Storage, Application Monitoring

and other topics
• Also available on demand

Ebooks, Blog Posts, Webinars

https://kubecampus.io/resources/gorilla-guide-getting-started-with-kubernetes/
https://kubecampus.io/resources/gorilla-guide-storage-and-applications-in-kubernetes/
https://kubecampus.io/resources/securing-cloud-native-applications-on-kubernetes/
https://kubecampus.io/resources/the-gorilla-guide-to-observability-in-kubernetes/
https://kubecampus.io/kubernetes/courses/application-consistency/lessons/application-level-data-management/
https://kubecampus.io/kubernetes/blog/how-to-configure-kasten-k10-with-oidc-based-authentication-using-okta/
https://kubecampus.io/kubernetes/blog/control-traffic-flow-in-your-kubernetes-cluster-using-network-policies/
https://kubecampus.io/kubernetes/blog/the-4-cs-of-kubernetes-security/
https://kubecampus.io/kubernetes/blog/minikube-spin-up-a-local-kubernetes-cluster-on-macos-linux-or-windows/
https://kubecampus.io/kubernetes/courses/first-kubernetes-cluster/lessons/kubernetes-concepts-and-building-your-first-cluster/
https://kubecampus.io/kubernetes/blog/the-developers-path-to-kubernetes-proficiency/
https://kubecampus.io/resources/webinar-kubernetes-security-primer/
https://kubecampus.io/resources/webinar-storage-and-applications-in-kubernetes/
https://kubecampus.io/resources/webinar-kubernetes-application-monitoring/

© 2022 KubeCampus. All rights reserved. All trademarks are the property of their respective owners.

New Promotions

• Refer a Friend by March 17:

✓Sign in with your KubeCampus

account, get your referral code
and share it with your buddies.

If your referred friend registers

for KubeCampus, you both will
have the chance to win a $100

gift card.

✓BONUS: The learner who gets

more friends registered (only

new registrations accepted) will
automatically win a $100 gift

card!

https://kubecampus.io/referral-program/

https://kubecampus.io/referral-program/

Questions ?

The $200 gift card winner is...

$200

Thank You

	Slide 1
	Slide 2: Housekeeping
	Slide 3: Agenda
	Slide 4: Kubernetes evolution
	Slide 5: What is a Custom Resource Based API ?
	Slide 6: How does a custom resource-based API work?
	Slide 7
	Slide 8: Declarative APIs
	Slide 9: Actions masquerading as resources
	Slide 10: A proper declarative API design
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Options to build CRD APIs
	Slide 19: Kubebuilder: steps
	Slide 20: Demo Recording
	Slide 21
	Slide 22
	Slide 23: Join us @ KubeCampus.io
	Slide 24: Courses
	Slide 25: Insightful Content
	Slide 26: New Promotions
	Slide 27
	Slide 28
	Slide 29

